JET STRUCTURE REPORT TO SIMULATION MEETING

Dennis Perepelitsa and Rosi Reed

Simulation samples

- High p_T jet samples allows us to study:
 - The effect of the thinned HCal on the jet response
 - The effect of the ganged EMCal towers on the jet response
 - High p_T jets produced at mid-rapidity, so will not elucidate the effect of ½ EMCal
- Low p_T jet sample allows us to study
 - ½ EMCal as these jets will have a wider η range
 - p_T dependence of inclusive jet response

All samples at:

/phenix/upgrades/decadal/dvp/GeneratorInputFiles/

Simulations Generated for Descoping Investigation 1 of 3 – high p_T

 N_{evt} = 10k of p_{T} = 50-55 GeV dijet events Generated with PYTHIA8

- Generate falling jet spectrum with truth-level filtering
 - Keep events with at least one R=0.4 truth jet with 50 GeV < p_T < 55 GeV and $|\eta|$ < 0.6.
- HardQCD:all
- PhaseSpace:pTHatMin = 45.0
- PYTHIA events only want to know jet response from detector, not from UE
- /phenix/upgrades/decadal/dvp/GeneratorInputFiles/

Simulations Generated for Descoping Investigation 2 of 3 – high p_T

 N_{evt} = 10k of p_{T} = 60-65 GeV dijet events Generated with PYTHIA8

- Generate falling jet spectrum with truth-level filtering
 - Keep events with at least one R=0.4 truth jet with 60 GeV < p_T < 65 GeV and |η| < 0.6.
- Used to test the HCAL performance on very high p_T hadrons
 - Probability of a punch-through increases with p_T

Simulations Generated for Descoping Investigation 3 of 3 – low p_T

 N_{evt} = 10k of p_{T} = 25-30 GeV dijet events Generated with PYTHIA8

- Generate falling jet spectrum with truth-level filtering
 - Keep events with at least one R=0.2 truth jet with 25 GeV < p_T < 30 GeV and $|\eta|$ < 0.9.
- Required to fully measure the effect of the reduced EMCal acceptance on the jet response

Single particle simulations

- Response due to single particles also simulated
 - Allows a high statistics check of particles that would high z particles within their given jet
- Simulate π^- at 40 GeV $|\eta|$ < 0.6
 - 3 GEANT configurations:
 - Nominal HCAL (260 cm)
 - Thin outer HCAL (240 cm)
 - "Extreme" outer HCAL (220 cm)

GEANT4 Simulations

High p_T jet sample run through 3 Calo configurations:

- Nominal
- 1/2 EMCal
- Thin HCal

Total of 30k G4 dijet events

- /sphenix/sim/sim01/production/aldcharge/pythia8/pythia8dijet/ 50-55GeV/
- Note: EMCal run with 1D Spacal geometry for memory considerations

Key observable: jet energy response p_T^{reco} / p_T^{true}

GEANT4 Simulations

Low p_T sample run through 2 Calo configurations:

- Nominal
- 1/2 EMCal

Total of 20k G4 dijet events

- /sphenix/sim/sim01/production/aldcharge/pythia8/ pythia8dijet/R0p2pT25t30eta0/spacal1d/
- Note: EMCal run with 1D Spacal geometry for memory considerations

Key observable: jet energy $response p_T^{reco} / p_T^{true}$ versus η

Inclusive Jet Response vs Calo Configuration

Results are similar for 60 - 65 GeV jets

For inclusive jet measurements

- No significant effect due to the ganged EMCal
- Slight shift and broadening of the Response for thin HCAL

Single hadron response vs HCAL config

- Response starts to rapidly degrade for HCAL thinner than 240 cm
- Punch-through hadrons become significant
 - Difficult to unfold high z particles
 - Symmetric response yields best unfolding results

Total Calorimeter Response (Cluster)

Gaussian Fit Parameters

	260 cm	240 cm	220 cm
Mean	0.835	0.825	0.801
Sigma	0.090	0.092	0.097

Jet Response – No Inner HCAL

- Jet
 Response
 with no
 inner HCAL
 - Broader
 - Larger JES shift

Unfolding Check → Low side tail

- Generate "fake data (blue points) with full GEANT response for thinner Hcal
 - Use single
 Gaussian to create
 the Response
 Matrix
 - Result Unfolding works with an approximate 5% systematic shift.

Z-Dependent Response

Effect is largest for high p_⊤ jets

What statistics do we expect for high $z \mapsto p_T$ jets?

- For both the response decreases with increasing z
 - Nominal: total difference of -8% from z=0 to z → 1
 - Response for thinner HCAL is systematically lower and z-dependent
 - 1% lower at z=0, but 4% lower as z → 1

Z-Dependent Response

Depletion on previous page can be seen here as well

- Truth-level D(z) distribution for jets with a "well-measured" energy differs from that of all jets
 - Well measured = $p_{Treco}/p_{Ttruth} > 0.7$
- Nominal: depletion of up to 10% at large-z relative to all jets
- Thin HCal configuration: depletion is up to 20% at large-z

1/2 EMCal

Fully Contained

• $|\eta|$ < 0.5

HCal

EMCal

1/2 EMCal

Partially Contained

• $0.5 < |\eta| < 0.7$

HCal

-2.5% shift to the JES

1/2 EMCal

- HCal can measure the jet energy EM component
- Does not study how detector-level UE fluctuations would be affected
- Does not quantify sys unc due to η-dependent jet energy correction
 - Flavor-dependence?
 - Fragmentation?

 $(1/N_{\rm jet})({\rm d}N/{\rm d}(p_{\rm T}^{
m reco}/p_{\rm T}^{
m truth}))$

Tracking Simulation Tasks

Take same set of N_{evt} = 10k, p_{T} = 50-55 GeV dijet events

- Do tracking-only sim for multiple tracking options
- Repeat for PYTHIA only and for HIJINGembedded

For 3 (e.g.) tracking configurations, this is 10k events x 3 configurations x 2 embeddings = 60k w/tracking-only sim

 Key observable: efficiency, fake rate, resolution vs. z

Conclusions

- Thinned outer HCal Small shift in JES for inclusive jets
 - Z-dependent fragmentation
 - Increased chance of punch-through
- No inner HCal Causes more of a shift than the thin HCal, likely to be a problem
- Ganged EMCal No effect on Jet Response
- ½ EMCal
 - JES has a -5% shift for $|\eta| > 0.7$ due to HCal only
 - Unfolding may be complicated in overlap region

Tasks – Looking for volunteers!

- Look at Poynting resolution
- Look at z-dependence of the thin Hcal response for low p_⊤ jets
- Single particle studies with photons
- η-scan of energy deposition in Calorimeters (in progress)
- Check the statistics for high z jet measurements using MIE projections – determine statistics limited case

Back-Up

ROOUNFOLD – Case 1

Generate "fake data (blue points) with full GEANT response for thinner Hcal and use the identical function to fill out the Response Matrix.

Result – Unfolding works with very good precision.

Jamie Nagle

ROOUNFOLD – Case 3

Generate "fake data (blue points) with full GEANT response <u>but shifting the tail to be</u> <u>on the high side</u> and use the just the single Gaussian to fill out the Response Matrix. Result – Large unfolding systematic offset from 50% up to > 400% at high pT.

Jet unfolding and non-Gaussian response

Dennis' GEANT Calorimeter energy response to 50-55 GeV jets.

Dennis' GEANT Calorimeter energy response to 50-55 GeV jets.

Now with thinner outer HCal. Results in second component Gaussian (low-side tail contribution).

5/18/2016

Bayes unfold works well – resulting unfold/truth ratio around one.

Use energy resolution function with lowside tail for "fake data", but then generate response matrix completely ignoring the low-side tail (just the peak Gaussian).

Systematic offset of \sim 5% and then larger at the highest pT \sim 15-20%. This is an extreme case (just an initial test).

Fragmentation Function MIE

pCDR Statements

- Jets The key to the physics is to cover jet energies of 20–70 GeV, for all centralities, for a range of jet sizes, with high statistics and performance insensitive to the details of jet fragmentation.
 - energy resolution < $120\%/\sqrt{E_{jet}}$ in p+p for R=0.2-0.4 jets
 - energy resolution < 150%/ $\sqrt{E_{jet}}$ in central Au+Au for R = 0.2 jets
 - energy scale uncertainty < 3% for inclusive jets
 - energy resolution, including effect of underlying event, such that scale of unfolding on raw yields is less than a factor of three
 - jets down to R = 0.2 (segmentation no coarser than $\Delta \eta \times \Delta \varphi \sim 0.1 \times 0.1$)
 - underlying event influence event-by-event (large coverage HCal/EMCal)
 - Energy measurement insensitive to softness of fragmentation (quarks or gluons) — HCal + EMCal

EMCal Acceptance – DiJet containment

- Reduced acceptance → Reduced DiJet statistics
 - Generator only analysis
 - Especially key for R > 0.2 and/or low p_T jets
 - Note: Pythia 8 tune not identical to the MIE, slightly better performance

Flavor Content

Total Calorimeter Response (Cluster)

MIE JER versus p_{T,jet}

- R = 0.4 jets effected more by UE
- Similar response in pp to R = 0.2 at p_T > 50 GeV
- JER affects unfolding uncertainty
- Ideal p_{T,Reco}/p_{T,truth} → 1
 - JES

Higher pT

Looked at higher p_⊤ jets (60 - 65 GeV) this morning

- Result is similar to 50 55 GeV
- Additionally looked at 40 GeV pions → high z particles
- Very similar to jet results → 40 GeV hadrons do not seem to be punching through

Jet Response for DiJet A_J Measurement

Difference in Jet Response between nominal and thin HCal has a minimal effect on reconstructed A_J

Does not account for UE Fluctuations

$$A_{J} = \frac{p_{T,Leading} - p_{T,Subleading}}{p_{T,Leading} + p_{T,Subleading}}$$

$$p_{T,Reco} > 10 \text{ GeV}$$

 $|\Delta \phi| > 2.35$

Jet Containment vs R - MIE

For fully contained jets, acceptance is reduced with increased R

- For R = 0.4 jets at 20 GeV, acceptance reduces the total reconstructed dijet cross-section ~30%
- Conditional cross-section is ~70% for R = 0.2 jets

Jet Containment vs R - Reduced EMCAL

For R = 0.4 jets at 20 GeV, acceptance reduces the total reconstructed dijet cross-section to ~4% from 30% from the MIE

An order of magnitude different

Previous Tracking Evaluation Work

G4 tracking studies have been underway in Simulations meeting

- On next slide, study of charged particle performance for 40 GeV dijets, with some current (at the time) tracking options
- Note: "VTX" on next slide is 2 layers with existing dead areas, not one reconfigured layer...

- Comparing tracking configurations: MIE ideal 7-layer silicon, reused VTX pixels + ganged strips, 7 layer ALICE ITS
- G4 tracking simulated, embedded in b=4fm Hijing background
- Fragmentation functions for p_T ~40 GeV dijets

Truth-matched $\frac{dN / dp_T^{reco}}{dN / dp_T^{truth}}$

How big are corrections for efficiency and p_{T} resolution together?

Fake+secondary truth-matched

$$\frac{dN / dp_T^{reco}}{dN / dp_T^{reco}}$$

What is the relative fake rate inside jet cone?